

Daily Tutorial Sheet-7	Level-2
•	

86.(A) Rate of dehydration of alcohols ∞ stability of initial carbocation formed after loosing

 H_2O from protonated alcohol. (Number of α -H atoms for H-effect)

- > Same can be visualised for p-derivative.
- It is referred to as *ipso*-substitution.

$$\mathbf{88.(BD)} \stackrel{\mathrm{CH}_2-\mathrm{OH}}{\longleftarrow} \stackrel{\mathrm{CH}_2-\mathrm{OH}}{\longleftarrow} \stackrel{\mathrm{CH}_2-\mathrm{OH}}{\longleftarrow} \stackrel{\mathrm{CH}_3\mathrm{O}^{\oplus}}{\longleftarrow} \stackrel{\mathrm{CH}_3\mathrm{O}^{\oplus}}{\longrightarrow} \stackrel{\mathrm{CH}_3\mathrm{O}^{$$

89.(B)
$$R - C - O_1 - C - R + PCl_5 \longrightarrow POCl_3 + 2R - C - Cl \xrightarrow{PhMgCl} R - C - Ph$$

90.(D) Rate of esterification $\propto \frac{1}{\text{steric hindrance}}$

 $(CH_3)_3 - C - OH$ Tert. butyl alcohol $(CH_3)_4 - C - OH$ $(CH_3)_3 - C - OH$ $(CH_3)_3 - C - OH$ $(CH_3)_4 - C - OH$ $(CH_3)_3 - C - OH$ $(CH_$

Note: Usually 3° alcohols resist oxidation with normal oxidising agents (CrO_3 , H_2CrO_4 etc.), but strong oxidising agents such as alkaline or acidic $KMnO_4$ or $K_2Cr_2O_7$ in hot condition break them to alkenes first and then alkenes are oxidised to carbonyl compounds or acids.

If hot acidic $K_2Cr_2O_7$ is used, it also oxidises ketones to acids : $CH_3COCH_3 \xrightarrow{\quad (O) \quad} CH_3COOH$

95.(BCD)

Ring expansion

Ring expansion

$$\oplus$$
 \oplus

Ring expansion

 \oplus
 \oplus

Shift

 \oplus

(D)